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ABSTRACT
Let {n;} be a sequence of natural numbers and let {p;} be a listing of
rational primes. Then an abelian group G = {z € Q| ordp,x > —n;} is
called a group of pseudo-integers. We investigate the logical properties
of such groups of pseudo-integers and the counterparts of such groups in
global fields in the case the number of primes allowed to appear in the
denominator is infinite. We show that, while the addition problem of any
recursive group of pseudo-integers is decidable, the Diophantine problem
for some recursive groups of pseudo-integers with infinite number of primes
allowed in the denominator, is not decidable. More precisely, there exist
recursive groups of pseudo-integers, where infinite number of primes are
allowed to appear in the denominator, such that there is no uniform algo-
rithm to decide whether a polynomial equation over Z in several variables
has solutions in the group. This result is obtained by giving a Diophantine
definition of Z over these groups. The proof is based on the strong Hasse

norm principal.

1. Introduction

The notion of pseudo-integers was first introduced by Hilton in [H] and further
investigated in group-theoretic context by Ries and Militello (see [R1], [R2] and
[M-R]). Groups of pseudo-integers are additive subgroups of rational numbers
and are defined below.
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Definition 1.1: Rational pseudo-integers. Let {n;} be a sequence of natural
numbers and let {p;} be a listing of rational primes. Then a group of pseudo-
integers G is defined to be the following set:

G ={z e Q ordy,x > —n;}.

In the papers mentioned above it is shown that in many aspects these additive
groups are similar to Z (thus the name pseudo-integers). The notion of pseudo-
integers has natural extensions. Before we can state the generalized definition
we need to define the notion of S-integers.

Definition 1.2: S-integers. Let K be a global field, i.e. a number field or an
algebraic function field over a finite field of constants. Let S be a finite collection
of its non-archimedean valuations. Then the ring O s = {z € K| ordpz > 0 for
p & S} is called the ring of S-integers.

Definition 1.3: Pseudo S-integers. Let K be a global field, let S be a finite
non-empty set consisting of all archimedean and some non-archimedean primes
of K, let {n;} be a sequence of natural numbers, let {p;} be a listing of non-
archimedean primes of K and let M be the following Og s-module: M =
{z € K| ordy,xz > —n; for p; ¢ S}. Then M is called a module of pseudo-
S-integers.

We will say that a module M of pseudo-S-integers is uniformly bounded by
n, if there exists n € N such that for all ,n; < n.

We will also say that a set T of non-archimedean primes of K is the set of
denominator primes of a module of pseudo-S-integers M if T = {p;| n; > 0}.

In the future M, r s will denote a module of pseudo-S-integers uniformly
bounded by n and with a set of denominator primes T'.

We will show that if M and the function p; — n; are recursive in the sense
which will be made precise below, there is an effective procedure which can decide
whether a linear system A - X = C, where A is a matrix over Ok g and C is a
vector of elements of M, has solutions in M. We will also prove the following

theorem.

THEOREM: Let K be an algebraic number field or an algebraic function field
over a finite field of constants. Let p > 2 be distinct from the characteristic of
the field, and let T be a collection of non-archimedean primes of K such that for
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some a € K, for all but finitely many p € T, the polynomial z? — a is irreducible
modulo p. Let S be a finite collection of non-archimedean primes of K and let
n < p.

Then Ok s has a Diophantine definition over M, rs.

Thus, if the Diophantine problem of Ok s is undecidable (and it is known
in all cases for function fields and in some cases for number fields (see [Dal,
[Da-Mat-Ro], [D1], [D2], [D4], [D5], [D-L], [Phl1], [Ph2], [Sha-Sh], [S1]-[S6])), the
Diophantine problem of M, 7 s is also undecidable. (Of course the undecidability
result in the function field case is not particularly interesting, since we have the
undecidability result for the field itself. For more details see [D3], [K-R1]-[K-R3],
[Ph2], [S7], [V].) The result above can be made a bit stronger in the following

sense.

THEOREM: Let T be an arbitrary set of non-archimedean primes of a global field
K. Let n be any natural number. Then for any § > 0 there exists a module
of pseudo-integers M, r, s such that Ts € T, the Dirichlet density of some set
containing T — Ty is less than §, and S-integers are polynomially definable over

Mn,T5,S‘

Arguably, the most interesting open questions in the area of Diophantine de-
finability and decidability are two questions pertaining to Q. Is the Diophantine
problem of Q decidable and do rational integers have a Diophantine definition
over Q7 A conjecture of Barry Mazur implies that there is no Diophantine def-
inition of Z over Q. (For more details see [M1].) Since these questions seem
completely intractable at this moment, one could try a gradual approach, i.e.
considering holomorphy rings of Q (and other number fields). Holomorphy rings
of global fields are defined in the same fashion as the rings of S-integers with
the difference being that S is now allowed to be infinite. For more system-
atic development of this approach see [M2] and [S5]. Unfortunately, even these
intermediate problems seem at the moment very hard for infinite S. Even over
the function fields of positive characteristic, where the progress has been much
more rapid than over number fields, so far there is no Diophantine definition of
polynomials over a rational function field or over a holomorphy ring with infinite
S. And that’s where pseudo-S-integers come into the picture. They offer yet
another approach to the field and, judging from these results, pseudo-integers
might be easier to handle than holomorphy rings.
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The main method used in this paper, which is based on the strong Hasse norm
principal (see, for example, Theorem 4.5, page 56 of [J] or p. 195 of [L] and
Propositions 10, 11, pp. 182183, Theorem 2, p. 206 of [W]), was first introduced
by Kim and Roush in [K-R1], where they used it to give a Diophantine defini-
tion of integrality at one fixed prime over the rational function fields of positive
characteristic over the constant fields not containing the algebraic closure of a
finite field. We extend this method so that when the poles of elements under
consideration are bounded, we can give a Diophantine definition of integrality at
infinitely many primes.

We will start with showing that the addition problem for any recursive module
of pseudo-S-integers is solvable. This result, which is not hard to prove, is really
a consequence of the Strong Approximation Theorem (for example, see [O], p.
77).

2. Decidability of the addition problem of pseudo-S-integers

The main technical difficulty associated with the proof of decidability concerns
methods of presenting primes in the finite extensions of rational fields. Before
we proceed we need to settle on a presentation of the global fields over which
we will do our work. A finite extension of Q or a rational function field over
a finite field of constants will be presented by specifying the monic irreducible
polynomial of its generator, and all the other field elements will be presented
as linear combinations of powers of the generator over the underlying rational
field. Under such a presentation, given an element of the field we can effectively

construct its minimal polynomial over the corresponding rational field.

LEMMA 2.1: Let K be a finite separable extension of a rational field R which
is either QQ or a rational function field over a finite field of constants. Let p
be a prime of R. Let {w,...,wn} be either an integral basis with respect to
Z or a polynomial ring in R such that p is not the infinite valuation of that
polynomial ring. (We know such a basis exists since both rings are PID’s.)
Let A = {37 aijw;}, where a;; is either a rational integer or a polynomial
of the above described polynomial ring of R, and (ayj,...,a,;) independently
run through all the residue classes modulo p?. Assume p = Hle Bt is the
factorization of p in K. Let (by,...,b;) be any k-tuple of representatives of
residue classes modulo (3%, ..., ﬂ,% respectively. Then A contains an element o
such that a & b; modulo (32.
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Proof: By the strong approximation theorem, K contains an algebraic integer
or an integral function + (an algebraic function integral over the polynomial ring
chosen above) such that v = b; modulo 32. Since {w;} constitute an integral
basis, v = 2?:1 ¢;w;, where ¢; are either rational integers or polynomials. By as-
sumption on A, it contains an element a = Z?zl a;w; such that a; 2 ¢; modulo p2.

Therefore, v = a modulop? and therefore ¥ & o modulo 87 for all i.

COROLLARY 2.2: Let A,p, K, (3y,..., 0, be as above. Then A contains elements
{on,...,ar} such that ordg,a; = 1, for all i # j, ordg,a; = 0, and for any pair
(ai,05) such that i # j there exist 7;; € A such that a; + 7505 is a unit at all

the factors of .

Proof: By Lemma 2.1, there exists an element o; such that ordg o; = 1 and
a; = 1 modulo 32 for all r # 7. Let a; be defined correspondingly for 8;. By the
strong approximation theorem, there exists an algebraic integer or an integral
function 7 such that ordg, 7 = 0, ordg,7 = 0, ordg, 7 = 1 for all r # ¢,j. As in
the argument above, A contains an element 7;; = 7 modulo p%. Thus, a; + T304

will be a unit at all the factors of p.

LEMMA 2.3: Let K be a finite separable extension of a rational field R, where
R is as above. Let p be a prime of R. Then assuming K is given by the monic
irreducible polynomial of its generator, the following statements are true.

1. There is an algorithm to determine factorization of p in K, i.e. there is an
algorithm to determine the number of factors p has in.K and their relative
and ramification degrees.

2. If p has m factors (31, ..., Bm in K, then there is an algorithm to construct
ai,...,am € K such that ordg,a; = 1 and for i # j, ordg, a; = 0.

Proof: First of all, we note that both in cases of the rational function field and Q,
one can construct integral bases for the polynomial ring and the ring of rational
integers respectively in K. (In the case of the function field we would have to
treat separately the infinite valuation of the polynomial ring.) For a description
of algorithms for such a construction see [Po] or [Sei]. Next, assuming we have
constructed an integral basis, and have been given a rational prime p, let A be
as in the preceding lemma and corollary.

Then we can use the following procedure:

1. Select the element oy € A such that its norm has the smallest possible

positive order at p (amongst the elements of A). (To make this selection pro-
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cess completely deterministic, given a natural ordering on Z and some effective
ordering of the polynomial ring, extend this ordering to the algebraic integers or
integral functions of I by using the lexicographical ordering with coefficient of
wy having the highest weight and the coefficient of w,, having the lowest weight.
Given several elements satisfying the selection criteria, we will now pick the first
one under our ordering.) Then there exists a factor 5y of p such that ordg, a; =1,
and f(B1/p) = ord,Ny/Rr(c1).
2. Assume qy,...,a, have been selected already. Then let

B, = {x € A| Ng,r(z) = 0 modulo p,
Yi=1,...,r 3y € A Ng,p(a; — yz) 2 0 modulo p}.

Choose an element of B, with the norm whose order at p is as small as possible
(amongst the elements of B,) and let a4 be equal to this element. (Again we
make the selection process deterministic by using the ordering described above.)

Repeat steps 1 and 2 until at some iteration k, By is empty. At this point we
can conclude that p has k factors By, ..., B and f(8;/p) = ord,Ng g ().

3. Find an n-tuple (ey,...,ex) of natural numbers such that Hle aft 20
modulo p, but the congruence is no longer true if any of the exponents is reduced
by one. (We can establish whether Hfﬂ a;* = 0 modulo p by determining
whether (Hf=1 ai*)/p is integral at p. The last step can be accomplished by
examining the coordinates of (I‘[f=1 «;*)/p with respect to an integral basis.)

Conclude, {e;} are the ramification degrees.

LEMMA 2.4: Let K be a global field. Then given an element v € K, we can

effectively construct its divisor in K.

Proof: First of all, by looking at the denominators of the coordinates of v with
respect to an integral basis, we can determine at which rational primes v is not
integral and produce a bound on the order of poles of 4. Then, using a procedure

similar to the one used in part 3 of the lemma above, we can determine the exact

1

order of the poles. By repeating this procedure for y~! we can take care of zeros

of ~.

THEOREM 2.5: Let K be a finite separable extension of a rational field R, where
R is either Q or a field of rational functions over a finite field of constants. Let S
be a finite set of non-archimedean primes of K. Let M be a module of pseudo-
S-integers such that given a prime there is a recursive procedure to determine
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the minimal order any element of M may have at this prime. Then the addition
problem of M is decidable, i.e. given a linear system A- X = C, where A is a
matrix over K, and C is a vector of elements of K, one can determine effectively

whether this system has solutions in M.

Proof: First of all, if the system is inconsistent or has a unique solution (and
both cases can be identified effectively) there is nothing to do. So the problem
reduces to the case of a system of the form

(2.5.1) {v; =) ayzi+a;]j=1,....k}

i=1
where the coefficients are arbitrary elements of K and which has to be solved over
M in variables x; and y;. By the preceding lemma, we can determine what primes
occur as poles of the coefficients of any of the equations. Let (p1,p2,...,pm) be
the list of primes occurring as poles of coefficients. Let [], be a local uniformizing

parameter for p,., let —m, € Z~ be the smallest order an element of M may have

at p,, and let ~n;; € Z~ be the smallest order any of {a;,ai;,...,0a,;} has at
p,. Then we claim that the system (2.5.1) will have solutions in M if and only
if for every r = 1,...,m the following system has solutions 213, ..., zym in the

residue ring of p”, where n, = max{n;,}:
(2.5.2) {Zaij“?"zir = —a;m" ™ modulo pi| j = 1,. ~-,k} .
i=1

Indeed, suppose {2.5.1) has solutions in M. Then for each j and each r,

ordy, ([>°i ai;2i] — aj) > — m,, and consequently

u
ordy, ([E IRy ekt e B

i=1
N

Ol‘dpr (I:E aijﬁff’zirJ +G,jﬂ';’.1j"+m') > Ny,
i=1

where z;, = 7 x; is integral at p, and hence a representative of a residue class

+wﬁﬁm)zww

modulo prr.
Conversely, suppose for every r, (2.5.2) has solutions (21,...,2y.). By the
Strong Approximation Theorem for each 4, there exists an element x; such that
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w2 =2 2 modulo p?r‘"l, r=1,...,m, and all the other poles of x; are among
valuations of S. Then for all i,x; € M, and

ordpry]- =OI‘de (Z Q35T + aj)

=1

u
= —m, — nj, +ordy, ([ g aijﬂf"ﬂ':n”xiJ + ajﬂllfr+m’)

i=1

u
Njr mr —_—
— My — njr + ordy, ([ E ai T (Tt = z,',)}
i=1

u
+ E ai]'ﬂ':}j"zir + ajﬂ':j"_‘_mr)
i=1

> —m, — njr + min(n, + 1,n;,) = —m, — nj, +nj, = —m,.

On the other hand, if g € {pi1,...,p,} is any other non-archimedean prime of
K not in S, then ordq(3 ;- a;;z; + a;) > 0 by assumption on the coefficients
and by construction of z;. Thus, y; € M.

Finally, since the residue ring of p?- is finite, we can decide effectively whether
(2.5.2) has solutions in this residue ring.

In the next section we will construct a Diophantine definition of S-integers

over some modules of pseudo-S-integers with infinite sets of denominator primes.

3. A Diophantine defintion of S-integers over some modules of pseudo-

S-integers

LEMMA 3.1: Let K be an algebraic number field or an algebraic function field
over a finite field of constants. Let p be a non-archimedean prime of K, let p
be a rational prime relatively prime to p and not divisible by the characteristic
of K, and let L be a cyclic extension of K of degree p such that p remains
prime in the extension. (That is the ideal pRy ,, where Ry, is the ring of
elements of L integral at p, is a prime ideal.) Let z € K be an element such that
ordyz % Omodp. Then the equation N k() = z has no solutions in L.

Proof:  Let P be the prime above p in L. Since N,k () = z, we must conclude
that ord,Np, k() # 0, ordpz # 0 and for any 0 € Gal(L/K), ordpo(z) =
ordpx. Thus, ordyNp k() = 0 mod p and we have a contradiction.
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LEMMA 3.2 (Hensel’s Lemma): Let K, be a local field with a prime p and a
finite residue field and let f(X) be a polynomial over the ring of integers of K.
Let ag be an integer of K, such that ord, f(ag) > 2ord, f'(c). Then f(X) has
a root a in K. (See, for example, [L], Proposition 2, page 42.)

LEMMA 3.3: Let K, be a local field with a finite residue field and the prime p,
let p be a positive rational integer relatively prime to the characteristic of the
residue field of K, let a K, unit a be a pth power in the residue field of p. Then
a is a pth power in K.

Proof: Consider the polynomial X? —a which is separable and has a root modulo
p. Thus by Hensel’s lemma, this polynomial has a root in K.

LEMMA 3.4: Let K, be a local field of characteristic 0 with a prime p and the
residue field of characteristic p > 0, such that p is a factor of p, let a be a unit of
K, such that a = ¢ modulo p2e®/P+1 for some € € K,. Then a is a pth power
in K.

Proof: Consider the polynomial f(X) = X? — a. Then ord, f(e) = 2e(p/p) + 1.
On the other hand, f'(e) = peP~!, and ord,(f'(e))* = 2ordyp = 2e(p/p) <
ordp f(€). Thus, f(X) has a root in K.

LEMMA 3.5: Let K, be a local field with a prime p and a finite residue field.
Let p be a rational prime different from the characteristic of the residue field, let
z € K, and let Ep = K,(z~ — 1)/P. Then ifordy(z~! — 1) > 0 or if ordyz > 0,

x is a pth power in Ep.
Proof: First suppose ordy(z~! — 1) > 0 and let w = (z~! — 1). Then

1
m=_1_+—w=(1—w+w2+---)%1modp,

and consequently, by a previous lemma, z is a pth power in K.

Suppose next ordyz > 0. Then I_T"" = 2P for some integer z € Ep. Therefore,
zz27P = (1 — z) = xz7P & 1 modulo P, where P is the prime above p in E.
Again, by Lemma 3.3, zz7P is a pth power in E'p, and therefore x is a pth power
in Ep.

LEMMA 3.6: Let L be a field and let E be a cyclic extension of L of prime degree
p > 2. Let x € L be such that it is a pth power in E. Then z is a norm of an
element in E.
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Proof: 1If x is a pth power in L, then it is clearly a norm. Suppose z is not a
pth power in L. Let y € E be such that y?» = z. Then all the conjugates of
y over L are of the form E;;y, where ¢, is a primitive pth root of unity. Thus,

Ng/p(y) = E;(,p(p_l)wx = z, since p is odd.

LEmMMA 3.7: Let K,, Ep be as in Lemma 3.5, and assume that the extension
Ep/K, is unramified. Let x be such that ord,x = Omodp. Then x is a norm of

an element from Ep.

Proof: Let  be a local uniformizing parameter of K. Then for some r, z = n"Pe
where € is a p-unit. Since the extension is not ramified, € is a norm of some § € Ep
(see, for example, Proposition 3.11, page 153 of [J]). Thus z is the norm of #"4.

LEMMA 3.8: Let K be a number field or an algebraic function field over a finite
field of constants. Let a € K. Let p be a rational prime distinct from the
characteristic of the field. Then a prime p of K relatively prime to p ramifies in
the extension K (a'/P)/K if and only if ordya % Omod p. (Here and below “a'/P”
will denote a p-th root of a.)

Proof: If ordya % 0 then p will clearly ramify in the extension. Suppose now
the residue field of p is not of characteristic p and ordya = Omodp. Since we
can multiply or divide a by a pth power of some local uniformizing parameter
without changing the extension, without loss of generality we can assume that
ordya = 0. But in this case the discriminant of the power basis of a'/P will be a

unit at p, and thus p will be unramified.

LEMMA 3.9: Let K be an algebraic function field of positive characteristic. Let p
be a rational prime distinct from the characteristic of the field. Let {q,p1,..., P}
be a set of primes of K, where q is of degree 1, let {a,b1,...,bn} be a set of
elements of K such that a is integral at q and for eachi = 1,...,m, b; is integral
at p;. Let {n,ni,...,n,} be a set of natural numbers and let 7 be of order 1 at
q. Then there exists y € K satisfying the following requirements:

1. ordqy = —n — kp, for some k € N\{0};

2. y is integral at all the other primes of K;

3. ordy, (y — b)) > ny;

4. ordg(yr"t*P —a) > 0.

Proof: By the Strong Approximation Theorem, there exists ¢ € K such that
ordy, (c — b;) > n;, c has a pole at q and is integral at all the other primes. Next
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using the Strong Approximation Theorem twice, one can establish that there
exists an element w € K whose divisor is of the form g~"~*P [Ip%7, where T
is an integral divisor, and for all i,¢; > ordy,(c — b;), and n + kp > |ordyc|.
Furthermore, by multiplying w by an appropriate constant if necessary, we can
assume that 7" +*Py 2 a modulo q. (Since we have assumed q to be of degree 1,
every residue class modulo q contains a constant.) Next consider z = w+c. 2
is integral at all the primes except for q at which it has a pole of the prescribed
order. Furthermore, zn™ kP & gntkpy o ¢ modulo q, 2 & ¢ & b; modulo pl,

and hence we are done.

LEMMA 3.10: Let F be a field, let p be a rational prime distinct from the char-
acteristic of the field. Assume F has all the p-th roots of unity and let a € F.
Then either a is a pth power in F or a'/P is of degree p over F and the extension
F(a'/?)/F is cyclic.

Proof: Suppose a is not a pth power and F' contains pth roots of unity. Let o
be a root of the polynomial G(X) = X? — a in the algebraic closure of F. F(a)
also contains §;a, where &, is a pth primitive root of unity and i =1,...,p - 1.
Therefore, F(a) contains all the roots of G(X) and the extension is Galois.
Finally consider an element o € Gal(F(a)/F) sending a to £ya. It is clear that
the order of ¢ is p, and thus the extension is of degree p and is cyclic.

LEMMA 3.11: Let K be a number field or an algebraic function field over a finite
field of constants. Let p > 2 be a rational prime different from the characteristic
of the field. Assume K contains all the pth roots of unity. Let S be a finite
collection of primes of K which in the case of a number field should contain all
the archimedean primes and all the factors of p, and in the case of an algebraic
function field should contain at least one valuation of degree 1. Let Sy C S be
a subset of S which in the number field case contains all the non-archimedean
primes in S and in the function field case contains all but one element of S which
will be assumed to be of degree 1. Let m be the following integral divisor of K:

m= H pP pr+2e(P/P)+2'
(PESy.ptp) plp

Let {c;} be a collection of elements of K satisfying the following requirements:
1. If K is a number field, all ¢;’s are algebraic integers.
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2. If K is a function field and {q} = S\Sy, then ¢;'s have a pole at valuation
q only.

3. Let o € K be a representative of an equivalence class modulo m. Let r be
an integer between 0 and p. Let (3 be a representative of an equivalence
class modulo q. Let w be a local uniformizing parameter with respect to q

(in case K is a function field). Then for some i,

¢ & a modulo m,
ordge; = 7 modulo p,

e;im~oe o 3 modulo q,

where the last two equivalencies apply in the function field case only. Let
W = S u {all the primes dividing c;’s}. Next, for some ¢ € K, let a; =
((c;x)~1~1)Y/P, let a € Ok s be an S-unit (i.e. all non-archimedean primes
at which a has a pole or a zero are elements of S) such that it is not a pth
power of K, and assume z does not have a pole at any prime t ¢ S such
that a is a pth power modulo t, and at any prime t € W\S.

Consider the following equations:

(3.11.1.9) NK(a,-)/K(yl) =G, i=0,...,|{ci}l,
(31122) NK(ai’ax/p)/K(m)(y2) = (C,’(E), = 0, 1, ey I{C,}I

Then for some i both (3.11.1.7) and (3.11.2.%) have solutions y, € K(o;) and
y2 € K(a;,a'/P) if and only if for every non-archimedean prime t of K such that

ordiz < 0, either ordx 2 Omodp ort € S.

Proof: First of all, we note that the collection {¢;} as described above exists in
the function field case by Lemma 3.9, and by the Strong Approximation Theorem
in the case of number fields. Next assume there exists a non-archimedean prime
t of K such that ordiz < 0, ordiz % Omodp, and a is not a pth power in the
residue field of t, t ¢ S. First of all, consider Ny (q,)/x(11) = ¢;z for some i.
Since ordyz < 0, t € W, orde(c;z)™! > 0 and ord((c;z)™* — 1) = 0. Since t
is not a factor of p, t is not ramified in the extension K(a;)/K. On the other
hand, ord;c;x % 0 mod p, and thus unless t splits into distinct factors in K{«;)/K,
(3.11.1.¢) will have no solutions by Lemma 3.1. So suppose t splits completely
in K(a;), and let t,...,t, be factors of t in the extension. Then a is not a pth
power modulo any of t;, since their residue fields are the same as the residue field
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of t. By the same argument as above, in the extension K (a;,a'/P)/K (a;) no t
will be ramified, and since a is not a pth power in the residue field, no t; will split
either. Thus, either the first or the second norm equation will have no sclutions.

To prove the converse, we will show that if x does not have the prohibited
poles, for some ¢ both equations will have solutions locally at all primes of K and
their factors in K'(o;). Then we will use the Hasse Norm Principal to assert the
existence of a global solution. The proof will proceed by considering 5 different
cases: t ¢ S, ord¢(c;z) = 0 (under our assumptions this is equivalent to ordic; =
ordiz = 0) and ord((c;z) "1 —-1) > 0; t € S, ordy(c;x) = 0 and ord,((c;x) "1 1) =
0; t¢ S, ordgr < 0 (under our assumptions this is equivalent to ord¢(c;z) < 0)
and plordix; t ¢ S, ordix > 0 (under our assumptions this is equivalent to
ord(c;z) > 0); t€ S.

We will first fix ¢ and show that assuming x has no forbidden poles, both
equations (3.11.1.4) and (3.11.2.7) will have solutions locally at all the primes
outside S. Then we will show that for some i for all t € S both equations will

have local solutions.

CAaseE 1: t¢ S, ordiz = 0 = ordee; = 0 and ord¢((c;z)~t — 1) > 0. Since
ord¢((c;z)~t — 1) > 0, by Lemma 3.5, ¢;z is a pth power in K; and thus in
K:(a;), and hence, by Lemma 3.6, (¢;z) is a norm in the extensions K(e;)/ K
and K(a'/?, a;)/ K (o).

CASE 2: t¢ S, ordiz = 0 = ordsc; and ord¢((c;z)~! ~ 1) = 0. In this case t
and its factors in K (a;) are unramified in both extensions, and thus, since ¢;x is
a unit at t, it is a local norm with respect to t and its factors in both extensions,

by Lemma, 3.7.

CaseE 3: t ¢ S, ordi(c;r) < 0 and p| ordex (under our assumption this is
equivalent to the condition p| ord¢(c;z)). In this case, t is again not ramified in

either extension, and we can apply Lemma 3.7.

Case 4: t¢ S, ordic;z > 0. By Lemma 3.5, ¢;z is a pth power in K{(w;). The
rest of the argument proceeds as in case 1.

CAsE 5: te€ S, tis non-archimedean. By assumption on {¢;}, for any x there
exists ¢ such that for all tin S, ¢;z is a pth power in K,. Therefore, for this i,
both equations will have solutions locally at all the primes of S and their factors
in K(o;).
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Thus, we have shown that for t € S, both equations (3.11.1.¢) and (3.11.2.i)
have solutions locally at t (and its factors) for any i, and we have shown that
there exists 7 such that (3.11.1.i) and (3.11.2.z) have solutions locally for all
non-archimedean t € S. In case K is a number field we still have to consider
archimedean valuations. Clearly, if the archimedean valuation is a complex one,
both equations will have solutions. If the archimedean valuation is a real one,
then since p > 2, ¢;x is a pth power in R and both equations have solutions.

Thus, for some ¢, both (3.11.1.7) and {(3.11.2.7) will have solutions at all the
primes and therefore, by the Hasse Norm Theorem, will have global solutions.

LEMMA 3.12: Let K be as above and let S be any finite set of non-archimedean
primes of K. Let M be any module of pseudo-S-integers. Then the set of non-
zero elements of K has a Diophantine definition over M.

Proof: The proof can proceed essentially along the same lines as the proof of
Theorem 4.2 of [S5], the only difference being that after we select two primes p and
g not in S we should let a(p) be such that ordya(p) is greater than the allowable
exponent of p in the denominator of elements of M, so that (a(p))™' ¢ M. A

similar requirement will apply to a(q).

LeEmMMA 3.13: Let E be a global field and let p be a non-archimedean prime.
Then the set of elements of E integral at p is Diophantine over E.

Proof: If the field characteristic is different from 2 see [S5], §3. In the case the
characteristic is 2, we cannot use norm forms from extensions of degree 2 as is
done in the above reference. Let q # p be another prime of E of prime degree
q > 2. (Existence of such a prime can be derived from the proof of the Chebotarev
density theorem.) Pick a rational prime p > max(3, hg degree(p) degree(q)),
where h = hg is the class number of E, and let x be an element whose divisor is
of the form (pdesree(a) /qdesree(p))r et w = (xtP + ¢t~P). Then

ordyw = 0 modulo p <= ordyt > 0.

Let {d;} C K = E(¢p), where &, is a primitive pth root of unity, and assume
{d;} satisfy the following conditions:

1. There exists a valuation t of K such that every d; is integral at all the
primes except for t and ord¢d; = 0 mod p.

2. For all 4, ordyd; = 0.



Vol. 101, 1997 THE LOGIC OF PSEUDO-S-INTEGERS 243

3. {ordqd;} runs through all the residue classes modulo p.

A finite set of such elements exists by Lemma 3.9. Let o; = ((d;w)~! — 1)1/7,
and let ¢ be a constant such that ¢ € K is not a pth power modulo p in K.
(Note that p and q might split in K. On the other hand, they do not ramify
in this constant extension. So if p; (g;) is a factor of p (9) in K and w € E,
then ord,, w = ordyw (ordg, w = ordqw). Thus, we will continue to treat p and
q as if they remained prime in K with the understanding that a factor of p or g
should be substituted for them, if p or q do not remain prime.) Next consider

the following equations:

(3131l) NK(a,-)/K(yl) = diw;
(3132@) NK(ai Ycl/p)/Ki(a)(y2) = diw

First of all, we observe the following. If ordyt < 0 and consequently
ordyd;w ¥ 0 modulo p,

as in the proof of Lemma 3.11, for all ¢, either (3.13.1.7) or (3.13.2.4) will have no
solutions. So assume ord,¢ > 0 and thus ordyw = O modulop. Then, ordyd;w =
0O modulop, and as in the proof of Lemma 3.10, for all i, both norm equations
will have solutions locally with respect to p and its factors in K(a;).

Next let ¢t be a prime different from p and q. Fix any . Then if v = t is a pole
of d;w, then in the extensions K (a;)/K and K (a;,c'/?)/K(a), t and its factors
are not ramified since d;w has a pole of degree equivalent to 0 modulo p at t
and any of its factors in K(a;). Thus, both norm equations will have solutions
locally at such a prime v and its factors in K(a;). If v is a zero of d;w or a zero
of (d;w)™! — 1, then as in the argument in the proof of Lemma 3.11, d;w is a pth
power locally at all the factors of v in K{«a;) and K(a, eV P} and therefore both
norm equations will have solutions. Finally, if ¢ is not a zero or a pole of d;w or
(d;w)~! — 1, then it is not ramified in either extension, and d;w, as a unit at t,
is a local norm again.

Thus, if ordyt > 0, for all ¢, both equations will have local solutions at all
primes different from q. Furthermore, for some i, ordqd;w = 0 modulo p, and
thus for this ¢, both norm equations will have local solutions at q and its factors
in K (a;). Therefore, again by the strong Hasse norm principal, for this 7, we will

have global solutions to both norm equations.
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Since we can rewrite equation (3.13.1.¢) and (3.13.2.7) as equivalent polynomial

equations over E, we are done.

LEMMA 3.14: Let E be a global field, let p be a rational prime different from the
characteristic of the field, let a € E, let T be a set of all primes q of E such that
xP — a is irreducible modulo q, let S be a finite set of non-archimedean primes of

E, let n € N. Then M, s is recursive.
(Follows from the discussion in §2.)

LEMMA 3.15: Let F be a finite field. Let a € F and let p be a rational prime
distinct from the characteristic of the field. Then G(X) = XP —a € F[X] is
irreducible if and only if a is not a pth power in F and F' contains pth roots of

unity.

Proof: Suppose a is not a pth power and F' contains pth roots of unity. Then
by Lemma. 3.10, any pth root of a is of degree p over F and G(X) is irreducible.

Conversely, suppose the polynomial is irreducible and let a be a root of G(X).
Then [F(a): F] = p. On the other hand, all extensions of finite fields are normal
and consequently F'(a) will contain roots of unity. But if pth roots of unity are
not in F, the extension F(a)/F contains a non-trivial subextension of degree
equal to or less than p — 1. Thus, we have a contradiction.

COROLLARY 3.16: Let K be a global field, let p be a rational prime distinct
from the characteristic of the field, let p be a K-prime such that p is not a factor
of p, let a € K be a unit at p, let §, be a primitive pth root of unity. Then a
polynomial G(X) = XP — a is irreducible modulo p if and only if the extension
K (&p,a/?)/K(&,) is of degree p, and a factor of p in K (£,) remains prime in this

extension.

Proof: Suppose G(X) is irreducible modulo p. Then G(X) is irreducible over
K, and [K(a'/?): K] = p. Since [K(&,): K] < p—1, al/? ¢ K(£,) and thus by
an argument similar to the one used in Lemma 3.10, [K(,,a/?): K(&,)] = p.
Furthermore, by Lemma. 3.15, a is not a pth power modulo p and the residue field
modulo p contains pth roots of unity. Therefore, either K contains pth roots of
unity or p splits completely in the extension K(,)/K. On the other hand, in
either case, the residue field of any factor of p in K (€,) is the same as the residue
field of p. Thus, G(X) is irreducible over the residue field of any factor of p in
K (&), and hence these factors will not split in the extension K (&,,a/?)/K(&p).
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Conversely, if one of the factors of p in K (§,) did not split in the above extension
which is of degree p, then al/? must be of degree p over the residue field of this
factor, but then a'/? must be of degree p over the residue field of p, and thus the
polynomial G(X) must be irreducible modulo p.

THEOREM 3.17: Let E be an algebraic number field or an algebraic function
field over a finite field of constants. Let p > 2 be distinct from the characteristic
of the field, and let T be a collection of non-archimedean primes of E such that
for some a € E, for all p € T, the polynomial P — a is irreducible modulo p. Let
S be a finite collection of non-archimedean primes of E and let n < p.

Then O ES has a Diophantine definition over M, r.

Proof: If E is a number field then let K = E(£,), where ¢, is a primitive pth
root of unity. If F is an algebraic function field, then let K be a field which is
obtained from E by adjoining primitive pth root of unity and, if £ does not have
a prime of relative degree 1, by adjoining a constant of degree prime to p over
E, so that the resulting field has a degree 1 prime. If such a prime of degree 1
is not in S, then add this prime together with all the zeros and poles of @, and
in the case of a number fields, together with all the factors of p, to S, and call
the resulting set S. The only primes which will ramify in the above described
extension are factors of p (in the case of a number field). Therefore, if t lies above
some prime of E which is not a factor of p, and « € E, then z will have the same
order at t as at a prime above it in K. Furthermore, by Lemma 3.16, a will be
of degree p over the residue fields of all the primes above primes in 7'.

Next consider equations (3.11.1.7), (3.11.2.7) with the above described K and
S. These equations can be rewritten as equivalent polynomial equations over K
and K(a;) respectively, which can then be rewritten as equivalent polynomial
equations over E. Furthermore, since, as we have noted above, the set of non-
zero elements of M, 7.5 has a Diophantine definition over M, .5, we can then
rewrite all the polynomial equations over K as equivalent polynomial equations
over M, 5.

Given z € M, 13, using Lemma 3.13, we can write down a system of Diophan-
tine equationg assuring that z does not have poles at valuations of W\S U S\S,
where W is as in the proof of Lemma 3.11. Finally, if x € Mn,T,§ and x does not
have poles at W\SU S\S then for some 4, (3.11.1.7) and (3.11.2.4) have solutions
in the corresponding fields if and only if z € O ES 1



246 A. SHLAPENTOKH Isr. J. Math.

For future reference denote the set of equations used to form the above
described Diophantine definition by DD(n, T, S, p, a).

COROLLARY 3.18: Let E be any number field where the Diophantine prob-
lem is undecidable over the ring of integers, let M, 5 be as above and let
P(xy(,...,zn) = 0 be any polynomial equation over E. Then there is no
algorithm to decide whether this equation has solutions in M, 1 g. (Note that
the corresponding result concerning algebraic function fields over finite fields
of constants has been known before, since it is implied by the Diophantine
undecidability of the field.)

We will next show that by combining several systems of the form
DD(n,T,S,p,a) for different p’s and a’s we can make the density of T arbitrarily

large.

LEMMA 3.19: Let K be a global field. Let Ry/K and Ry/K be two Galois
extensions of K such that [R\Ry: R,] = [Ra: K| and [RiRy: Ry] = [Ri: K].
Then the following statements are true:

1. RiRy/K is Galois, Gal(RiRy/K) = Gal(R/K) ® Gal(R2/K), and for
i=1,2, i j, Gal(RiRa/R;) = Gal(R;/K).

2. Let 3 be a prime of R{Ry and let p be the prime below 3 in K. Then p
splits completely in Ry if and only if the Frobenius automorphism of 3 is
of the form (o, identity), where ¢ € Gal(R1/K), and the second element
of the pair is the identity element of the Gal(Rz/K).

Proof: 1. Let a; be the generator of R; over K. Then a; will retain the
same conjugates over Rj, for ¢ # j, i,j = 1,2. Furthermore, each element of
Gal(R; Ry/K) will be determined by the images of a; and a3, while each element
of Gal(R;/K) is determined by the image of o;. Thus we have a one-to-one onto
map between Gal(R,Ry/K) and Gal(R1/K) ® Gal(Ry/K) as sets and it is easy
to verify that it is an isomorphism. Finally, given the above argument it is clear
that for 4,7 =1,2,1 # 7,

Gal(R1R2/R;) = {(o, identity)| o € Gal(R;/K)}.
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2. Consider the following diagram:
B € RiR,

/ \
(3.19.1) R Ry BNRy
\

7

pe K

and let 3 and p be as described in the statement of the lemma. Let 7 be the
Frobenius automorphism of 3 over K. Then {r) is the decomposition group
of 8 over K and (r) N Gal(R;Ry/Rs) is the decomposition group of 3 over
R,. Furthermore, the decomposition group of 3 N Ry over K is isomorphic
the quotient (7)/(r) N Gal(R1Rz/R2). But since p splits completely in Ry,
this quotient is trivial, and thus (r) C Gal(R1Ry/R3). Hence, 7 must be of
the desired form. Conversely, suppose ¢ € Gal(R;/K), and consider 7 = (o,
identity)€ Gal(R1R2/K). Let 3 be a prime whose Frobenius automorphism is
7. Then since 7 € Gal(RyRy/Rs), (7) is the decomposition group of 3 over Ry,
and thus the decomposition group of f N Ry over K is trivial. Thus p will split
completely in Ro.

COROLLARY 3.20: Let K be a global field; let {L;} be a sequence of Galois
extensions of K satisfying the following requirements:
1. Let Tir"ik = Li1 o 'Lik- Then for any ik+1 S N\{’l], .. .,ik},

[Ti1--'ik+1: Til"'ik] = [L'ik+1: K] and [Ti1-'-‘ik+1: Lk+1] = [Ti1~~ik: K]

2. For any {i1,...,4} C N, T,...;, is Galois over K.
Let Exq1= L1+ Lipg1 = D11y, let Ty € Gal(Egy1/K).
Then either all K-primes p with an Ey.1-factor whose Frobenius automorphism
is Ti41 split completely in some L;, i =1,...,k+ 1, or none of them do.

Proof: Assume there exists a prime p in K, such that p splits completely in some
L;,;1<1<k+1andp has a factor 3 in Ey4; whose Frobenius automorphism
is 7x41. We will prove that all the other primes q of K with factors v in Eyx41
whose Frobenius automorphism is 7.3 will split completely in this L;.

First, we write Ex1 = Ty...¢i—1)(i—1)--.k L, and note that we can apply Lemma
3.19 with Ry = Ty...;—1)(i+1)--+ and Ry = L;. Thus, we conclude p splits com-
pletely in L; if and only if 7xy1 = (0k+41, identity), where ory1 €
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Gal(T\...¢i-1)(i41)--+/K) and the second element is the identity of Gal(L;/K).
The last assertion, however, is true if and only if all q’s as described above will

split completely in L;.

LEMMA 3.21: Let K be a global field; let {L;} be a sequence of Galois extensions
of K satisfying the requirements 1 and 2 from Corollary 3.20 as well as the
following requirements:

3. X T =

4. For all i € N, the extension L;/K is abelian.

Let Sy, be the density of the set of all the primes of K splitting completely in
some L; for 1 <i < k. Then limg_,oo S = 1.

Proof: We will prove by induction that

Sk+1 = Sk + (1~ Sk).

1
[Ekt1: K]
Consider the primes in Sk 1\Sk. Let p be a prime in the above described set and
apply Lemma 3.19 with Ry = Ej and Ry = Lgy; using the diagram below:

B € B

RN

(3.21.1) v € By Lk+1

~N

ppeK

Then in Fyy1, p has a factor 3 whose Frobenius automorphism is 7 =
(o, identity), where ¢ € Gal(Ex/K) and the second element is the identity of
Gal(Lx41/K). Thus, 1, = 0. Conversely, for each o € Gal(Eyx/K), 7 is a
Frobenius automorphism of some Ej,i-prime 3, such that p, the prime below
it in K, splits completely in Lyy;. Let v be the Ey-prime above p. Then v
splits completely in E‘k+1. Therefore, the decomposition group of v over p is
isomorphic to the decomposition group of 3 over p, and hence, o is the Frobenius
automorphism of v over p.

By assumption, p does not split completely in any L;, i = 1,...,k. Thus
p belongs to the set whose density is 1 — Si. Furthermore, from the previous

corollary, all the primes in this set can be divided into non-intersecting classes
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corresponding to the Frobenius automorphisms of their factors in Ej. Using
the Chebotarev density theorem and the fact that all extensions are abelian,
we can conclude the number of elements of Gal(E)/K) which are Frobenius
automorphisms of Ej-primes lying above primes of K which do not split in any
L;fori=1,...,kis (1 - Si) - [Ek: K]. Therefore, we have (1 — S) - [Ex: K]
elements of Gal(E.1/K) which are Frobenius automorphisms of the primes lying
above the primes in Si41\Sk. Therefore, the density of this prime set is

(1 - Sk) . [EK: K]/[Ek.HZ K] = (1 — Sk) . [Lk+1: K]_l.

Suppose now limg ..o Sy # 1. Since {Si} is a non-decreasing bounded
sequence, it must have a limit. Suppose this limit A < 1. Then 1 -5, >1- A
for all k. But then

Sk41> Sk + (1 - [Lk+1 K™t
k+1

Sk+1 > ( Z I K] K]

COROLLARY 3.22: Let K be a number field, and let {p;}:cn be the sequence of
all rational primes which do not have ramified factors in K. For each i € N, let
&; be a p;th primitive root of unity and let Sy be the density of the set of primes
of K splitting completely in K (§;) for some 1 < i < k. Then limg—,oo Sk = 1.

Proof:  We have to show that all the conditions of Lemma 3.21 are satisfied.

First of all, we will show that [K (&, -+ &,,,): K(&, -+ &) = K (Ekt1): K.
In the extension, K(&;, ---&;,,,)/Q, the ramification degree of a factor of p;, , ,,
is at least p;,,, — 1. On the other hand, by assumption p;,,, does not have any
ramified factors in the extension K/Q and no ramified factors in the extension
K(&, ...&,)/K. Thus,

[I{(fu o 'Eik+1): K(éil v 611)] = [K'(ék-*'l): K} = p’ik+1 - 1.
All the extensions are clearly Galois and abelian by Lemma 3.19 and induction.
Finally, 21—1 - 7 diverges since we removed only finitely many primes.

COROLLARY 3.23: Let K be an algebraic function field over a finite field of
constants C of size q. Let {p;}ien be a sequence of all rational primes which
does not include factors of q. For each i € N, let &; be a primitive g;th root of
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unity, where g; is a rational prime, ¢| q;i_'ll and ¢; [/ (¢ —1). Then the following

statements are true:
1. For each i the above described ¢; exists.
2. [K(&): K]l=p
3. qi #qy, for j #1i.
4. Let Sy, be the density of the set of primes of K splitting completely in K (&;)
for some 1 <1< k. Then limg_,o, S = 1.

Proof: 1. Let t be a common divisor of ¢ — 1 and 9_;"__—11_ =gPi~l+4..-+1. Then
t| ps, ie. t = p;.

2. Since ¢; 4 ¢ — 1, ¢;th primitive roots of unity are not elements of C. On
the other hand, if C; is the extension of degree p; of C, then & € C;. Thus,
C(&) = C; since the extension C;/C is of prime degree and therefore has no
subextensions. Thus, [K(&): K| = p;.

3. & ¢ C;, where C; is the extension of degree p; # p; of C, since the extension
C;/C does not have subextensions of degree p;. Thus ¢; # ¢; for i # j.

4. First of all, the equality [K (&, -~ &,,,): K (&, &) = [K(+1): K]
follows from the fact that for each pair i # 7, ([K(&): K, [K(€;): K1) = 1. Since
we are talking about extensions of finite fields, all the extensions are Galois and

abelian. Finally, as in the preceding corollary Y .o, 1/p; diverges.

LEMMA 3.24: Let K be a global field, let p be a rational prime distinct from the
characteristic of the field. Let £ be a primitive pth root of unity. Let ay,...,ax €
K be such that there exists a set of distinct K-primes {q1,...,qx} satisfying the
following conditions:

1. ordg,a; = 1.

2. ordq,a; =0 for i # j.

3. If K is a number field then, for alli=1,...,k, g; is not a factor of p.
Then the density of the set of K -primes which split completely in K (§) but whose
factors do not remain prime in any of the extensions K(ai1 /P, £)/K (&) is

1 1
(K( a7, a/?): k] [K(): K]p*
Proof: First of all, we note that ay,...,ar € K exist by the Weak Approx-
imation Theorem. Secondly, we note that for each ¢ = 1,...,k, by construc-
tion, q; does ot ramify in the extension K (£,a;’?, .. ., all®, a;/_’i, ...a'")/K but
does have ramification degree p in the extension X (¢, a;/ LI ,ai/ Py/K, so that




Vol. 101, 1997 THE LOGIC OF PSEUDO-S-INTEGERS 251

indeed [K (€, al/ L .,a,lc/ P): K] = [K(¢): K)p*. Furthermore, suppose p splits
completely in K(£), but a factor 8 of p does not remain prime in any of the
extensions K (€, ai1 / P)/K (€). Since all of these extensions are cyclic of degree p,
this means 3 splits completely in all these extensions. On the other hand, let
M be any finite extension of K(£) and assume 3 splits completely in the ex-
tension K (£ ,ai / P)/K(€). Then, assuming M(€) does not contain ai1 /P all the
factors of 3 will split completely in the extension M (¢, a: / PY/M(€). Thus, 3 will
split completely in K (&,a 1/ L 1/ PY/K(€). Therefore p will split completely
in K(&, all P..a k/ P)/K. Consequently, the desired conclusion follows from the

Chebotarev density theorem.

THEOREM 3.25: Let T be an arbitrary set of non-archimedean primes of a global
field K. Let n be any positive integer. Then for any 6 > 0 there exists a module
of pseudo-integers M, ,,s such that Ts C T, the Dirichlet density of some set
containing T — T is less than &, and S-integers are polynomially definable over

M, 1.5

Proof: Assume § > 0 is given. Let {p;} be a sequence of rational primes such
that in the case of a number field, the primes in the sequence are greater than n
and satisfy the requirement of Corollary 3.22. In the case of a function field, the
sequence {p;} should be such that the corresponding sequence {g;}, as defined in
Corollary 3.23, contains only the primes which are greater than n.

Let k be large enough so that |1 — S| < §/2, where Sy is defined in Corollary
3.22 or 3.23, depending on the nature of the field. Next, for each i =1,...,k, se-
lect a1, . . ., Qi satisfying the requirements of Corollary 3.23 and assume that m
is large enough so that in the case of a number field for all 4,1/(p; — 1)p]* < 6/2k,
and in the case of a function field 1/(p; - ¢™) < §/2k, where ¢; is defined as in
Corollary 3.23. Next consider equations U1 =1 DD(n,T;j, S, pi, ai;) for number
fields, Ul =1 DD(n,Tj;, S, q;,as;) for function fields, where T;; is the set of K
primes whose factors in K (¢;) remain prime in the extension K (§;, a; 1 p') /K (5,)
or K(&ia;; 14 )/ K (&) depending on the nature of the field. Let T' = Uz e T
By Theorem 3.17 and Corollary 3.16, these equations will be a Diophantine def—
inition of Ok s over M, 1s. Suppose a K-prime p ¢ T. Then either p does
not split completely in any extension K{£;)/K, or for some i, p splits completely
in some extension K (&;)/K, but no factor of p in K(&;) remains prime in any
extension K(;,a,] i /K (&) or K(&,a;] Y %)/K(&;) depending on the nature of
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the field. Thus, p will belong to a set whose density is less than §/2 + kd/2k = 4.
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