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ABSTRACT 

Let {nl} be a sequence of natural numbers and let {Pi} be a listing of 

rational primes. Then an abelian group G -- {x E QI ordp~x ~ -ni}  is 

called a group of pseudo-integers. We investigate the logical properties 

of such groups of pseudo-integers and the counterparts of such groups in 

global fields in the case the number of primes allowed to appear in the 

denominator is infinite. We show that, while the addition problem of any 

recursive group of pseudo-integers is decidable, the Diophantine problem 

for some recursive groups of pseudo-integers with infinite number of primes 

allowed in the denominator, is not decidable. More precisely, there exist 

recursive groups of pseudo-integers, where infinite number of primes are 

allowed to appear in the denominator, such that there is no uniform algo- 

rithm to decide whether a polynomial equation over Z in several variables 

has solutions in the group. This result is obtained by giving a Diophantine 

definition of Z over these groups. The proof is based on the strong Hasse 

norm principal. 

1. I n t r o d u c t i o n  

T h e  n o t i o n  of  p seudo- in t ege r s  was first  i n t r o d u c e d  by  H i l t o n  in [H] a n d  f u r t h e r  

i n v e s t i g a t e d  in g r o u p - t h e o r e t i c  c o n t e x t  by  Ries  a n d  Mi l i t e l lo  (see [R1], [R2] a n d  

[M-R]).  G r o u p s  of  p seudo - in t ege r s  are  a d d i t i v e  s u b g r o u p s  of  r a t i o n a l  n u m b e r s  

a n d  a re  def ined  be low.  
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Definition 1.1: Rational pseudo-integers. Let {hi} be a sequence of natural 

numbers and let {Pi} be a listing of rational primes. Then a group of pseudo- 

integers G is defined to be the following set: 

G = {x e Q[ ordp, x _> -n i } .  

In the papers mentioned above it is shown that in many aspects these additive 

groups are similar to Z (thus the name pseudo-integers). The notion of pseudo- 

integers has natural extensions. Before we can state the generalized definition 

we need to define the notion of S-integers. 

Definition 1.2: S-integers. Let K be a global field, i.e. a number field or an 

algebraic function field over a finite field of constants. Let S be a finite collection 

of its non-archimedean valuations. Then the ring OK,S = {x C K[ ordpx > 0 for 

p • S} is called the ring of S-integers. 

Definition 1.3: Pseudo S-integers. Let K be a global field, let S be a finite 

non-empty set consisting of all archimedean and some non-archimedean primes 

of K,  let {ni} be a sequence of natural numbers, let {pi} be a listing of non- 

archimedean primes of K and let M be the following OK,s-module: M = 

{x C K I ordp,x > - n i  for Pi ~ S}. Then M is called a module of pseudo- 

S-integers. 

We will say that  a module M of pseudo-S-integers is u n i f o r m l y  b o u n d e d  by 

n, if there exists n c N such that for all i, ni <_ n. 

We will also say that  a set T of non-archimedean primes of K is the set of 

d e n o m i n a t o r  p r i m e s  of a module of pseudo-S-integers M if T -- {Pil ni > 0}. 

In the future Mn,T,S will denote a module of pseudo-S-integers uniformly 

bounded by n and with a set of denominator primes T. 

We will show that  if M and the function Pi ~ ni are recursive in the sense 

which will be made precise below, there is an effective procedure which can decide 

whether a linear system A �9 X = C, where A is a matrix over OK,S and C is a 

vector of elements of M, has solutions in M. We will also prove the following 

theorem. 

THEOREM: Let K be an algebraic number field or an algebraic function field 

over a finite field of constants. Let p > 2 be distinct from the characteristic of 

the field, and let T be a collection of non-archimedean primes of K such that for 
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some a E K ,  for all but finitely many p C T, the polynomial x p - a is irreducible 

modulo p. Let S be a finite collection of non-archimedean primes of K and let 

n < p .  

Then OK,S has a Diophantine definition over Mn,T,S. 

Thus, if the Diophantine problem of OK,S is undecidable (and it is known 

in all cases for function fields and in some cases for number fields (see [Da], 

[Da-Mat-Ro], [DI], [D2], [D4], [D5], [D-L], [Phi], [Ph2], [Sha-Sh], [S1]-[$6])), the 

Diophantine problem of Mn,T,S is also undecidable. (Of course the undecidability 

result in the function field case is not particularly interesting, since we have the 

undecidability result for the field itself. For more details see [D3], [K-R1]-[K-R3], 

[Ph2], [$7], [V].) The result above can be made a bit stronger in the following 

sense. 

THEOREM: Let T be an arbitrary set of  non-archimedean primes of a global field 

K. Let n be any natural number. Then for any 5 > 0 there exists a module 

of  pseudo-integers M~,T~,S such that T~ E T, the Dirichlet density of  some set 

containing T - T~ is less than 5, and S-integers are polynomially definable over 

M,~ ,T~ ,S. 

Arguably, the most interesting open questions in the area of Diophantine de- 

finability and decidability are two questions pertaining to Q. Is the Diophantine 

problem of Q decidable and do rational integers have a Diophantine definition 

over Q? A conjecture of Barry Mazur implies that there is no Diophantine def- 

inition of Z over Q. (For more details see [M1].) Since these questions seem 

completely intractable at this moment, one could try a gradual approach, i.e. 

considering holomorphy rings of Q (and other number fields). Holomorphy rings 

of global fields axe defined in the same fashion as the rings of S-integers with 

the difference being that S is now allowed to be infinite. For more system- 

atic development of this approach see [M2] and [$5]. Unfortunately, even these 

intermediate problems seem at the moment very hard for infinite S. Even over 

the function fields of positive characteristic, where the progress has been much 

more rapid than over number fields, so far there is no Diophantine definition of 

polynomials over a rational function field or over a holomorphy ring with infinite 

S. And that 's where pseudo-S-integers come into the picture. They offer yet 

another approach to the field and, judging from these results, pseudo-integers 

might be easier to handle than holomorphy rings. 
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The main method used in this paper, which is based on the strong Hasse norm 

principal (see, for example, Theorem 4.5, page 56 of [J] or p. 195 of [L] and 

Propositions 10, 11, pp. 182-183, Theorem 2, p. 206 of [W]), was first introduced 

by Kim and Roush in [K-R1], where they used it to give a Diophantine defini- 

tion of integrality at one fixed prime over the rational function fields of positive 

characteristic over the constant fields not containing the algebraic closure of a 

finite field. We extend this method so that when the poles of elements under 

consideration are bounded, we can give a Diophantine definition of integrality at 

infinitely many primes. 

We will start with showing that the addition problem for any recursive module 

of pseudo-S-integers is solvable. This result, which is not hard to prove, is really 

a consequence of the Strong Approximation Theorem (for example, see [O], p. 

77). 

2. D e c i d a b i l i t y  o f  t h e  a d d i t i o n  p r o b l e m  of  p s e u d o - S - i n t e g e r s  

The main technical difficulty associated with the proof of decidability concerns 

methods of presenting primes in the finite extensions of rational fields. Before 

we proceed we need to settle on a presentation of the global fields over which 

we will do our work. A finite extension of Q or a rational function field over 

a finite field of constants will be presented by specifying the monic irreducible 

polynomial of its generator, and all the other field elements will be presented 

as linear combinations of powers of the generator over the underlying rational 

field. Under such a presentation, given an element of the field we can effectively 

construct its minimal polynomial over the corresponding rational field. 

LEMMA 2.1: Let K be a finite separable extension of a rational field R which 

is either Q or a rational function field over a finite field of constants. Let p 

be a prime of R. Let {Wx,...,w,~} be either an integral basis with respect to 

Z or a polynomial ring in R such that p is not the infinite valuation of that 

polynomial ring. (We know such a basis exists since both rings are PID's.) 

Let A = { ~ = 1  a~iwi}, where a~j is either a rational integer or a polynomial 

of the above described polynomial ring of R, and ( a u , . . .  , a,~j) independently 

run through all the residue classes modulo p 2. Assume p = 1-[~=1 ~ is the 

factorization of p in K.  Let (bx, . . . ,bk) be any k-tuple of representatives of 

residue classes modulo fiT,-..,/32 respectively. Then A contains an element a 

such that (~ ~ bi modulo fl~. 
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Proof: By the strong approximation theorem, K contains an algebraic integer 

or an integral function "y (an algebraic function integral over the polynomial ring 

chosen above) such that  3' ---- bi modulo/3/2. Since {~oi} constitute an integral 
n basis, "~ = ~-~'~i=1 ciwi, where ci are either rational integers or polynomials. By as- 

sumption on A, it contains an element a = ~ i = 1  aiwi such that  ai = ci modulo p2. 

Therefore, "~ -- a modulo p2 and therefore ~, -- a modulo/3/~ for all i. 

COROLLARY 2.2: Let A, p, K,/31 . . . .  ,/3k be as above. Then A contains elements 

{ a l , . . .  ,ak} such that ord/~cti = 1, for all i r j ,  ord~,aj  = 0, and for any pair 

(oli,o~j) such that i r j there exist Tij C A such that ai + rijO~j i8 a unit at all 

the factors of p. 

Proof: By Lemma 2.1, there exists an element ctl such that  ordz, cti = 1 and 

c~i --- 1 modulo/32 for all r r i. Let ~j be defined correspondingly for @. By the 

strong approximation theorem, there exists an algebraic integer or an integral 

function ~- such that  ordz, r = 0, ordz~r = 0, o rd r  = 1 for all r r i , j .  As in 

the argument above, A contains an element rij ~ r modulo p2. Thus, c~i + TijO~i 

will be a unit at all the factors of p. 

LEMMA 2.3: Let K be a finite separable extension of a rational field R, where 

R is as above. Let p be a prime of R. Then assuming K is given by the monic 

irreducible polynomial of its generator, the following statements are true. 

1. There is an algorithm to determine factorization ofp  in K,  i.e. there is an 

algorithm to determine the number of factors p has in .K and their relative 

and ramification degrees. 

2. I f  p has m factors/31,. . . , /3,~ in K,  then there is an algorithm to construct 

c~1 . . . .  ,~m ~ K such that ordfl~c~i --- 1 and for i r j ,  ordzj~i = 0. 

Proof." First of all, we note that  both  in cases of the rational function field and Q, 

one can construct integral bases for the po!ynomial ring and the ring of rational 

integers respectively in K.  (In the case of the function field we would have to 

treat  separately the infinite valuation of the polynomial ring.) For a description 

of algorithms for such a construction see [Po] or [Sei]. Next, assuming we have 

constructed an integral basis, and have been given a rational prime p, let A be 

as in the preceding lemma and corollary. 

Then we can use the following procedure: 

1. Select the element c~1 E A such that  its norm has the smallest possible 

positive order at p (amongst the elements of A). (To make this selection pro- 
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cess completely deterministic, given a natural ordering on Z and some effective 

ordering of the polynomial ring, extend this ordering to the algebraic integers or 

integral functions of K by using the lexicographical ordering with coefficient of 

a~l having the highest weight and the coefficient of a J,, having the lowest weight. 

Given several elements satisfying the selection criteria, we will now pick the first 

one under our ordering.) Then there exists a factor/3t of p such that  ord;h ax = 1, 

and f( /3:/p) = ordpNK/n (al) .  

2. Assume a l  . . . . .  ar  have been selected already. Then let 

Br = {x E A[ NK/n (x )  ~ 0 modulo p, 

Vi = 1 , . . . , r  3y C A NK/n(ai  - yx) ~ 0 modulo p}. 

Choose an element of B~ with the norm whose order at p is as small as possible 

(amongst the elements of B~) and let a~+l be equal to this element. (Again we 

make the selection process deterministic by using the ordering described above.) 

Repeat steps 1 and 2 until at some iteration k, Bk is empty. At this point we 

can conclude that p has k factors/31,.. . , /3k and f(/3i/P) = ordpNK/n(ai) �9 

3. Find an n-tuple ( e l , . . . , e k )  of natural numbers such that rI~=l a~ ' ---- 0 

modulo p, but the congruence is no longer true if any of the exponents is reduced 

by one. (We can establish whether 1 ai = 0 modulo p by determining 

k a i )/p is integral at p. The last step can be accomplished by whether (1-L=I e~ 
( F I  k OL e~ examining the coordinates of ~tti=l i )/P with respect to an integral basis.) 

Conclude, {ei} are the ramification degrees. 

LEMMA 2.4: Let K be a global field. Then given an element 7 E K, we can 

effectively construct its divisor in K.  

Proof: First of all, by looking at the denominators of the coordinates of ~, with 

respect to an integral basis, we can determine at which rational primes 7 is not 

integral and produce a bound on the order of poles of 7- Then, using a procedure 

similar to the one used in part 3 of the lemma above, we can determine the exact 

order of the poles. By repeating this procedure for 7 -1 we can take care of zeros 

of 7. 

THEOREM 2.5: Let K be a finite separable extension of  a rational field R, where 

R is either Q or a field of  rational functions over a finite field of constants. Let S 

be a finite set of non-archimedean primes of K.  Let M be a module of  pseudo- 

S-integers such that given a prime there is a recursive procedure to determine 
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the minimal order any element of M may have at this prime. Then the addition 

problem of M is decidable, i.e. given a linear system A- X -- C, where A is a 

matrix over K,  and C is a vector of elements of K,  one can determine effectively 

whether this system has solutions in M.  

Proof." First of all, if the system is inconsistent or has a unique solution (and 

both cases can be identified effectively) there is nothing to do. So the problem 

reduces to the case of a system of the form 

u 

(2.5.1) {yj = ~ aijxi + all j = 1 , . . . , k } ,  
i=1 

where the coefficients are arbitrary elements of K and which has to be solved over 

M in variables xi and yi. By the preceding lemma, we can determine what primes 

occur as poles of the coefficients of any of the equations. Let (Pl, P2, . . . ,  Pro) be 

the list of primes occurring as poles of coefficients. Let l-I~ be a local uniformizing 

parameter for p~, let -m~ ~ Z -  be the smallest order an element of M may have 

at p~, and let - n l j  E Z -  be the smallest order any of {as, a l l , . . . ,  auj} has at 

p~. Then we claiIn that  the system (2.5.1) will have solutions in M if and only 

if for every r -- 1 , . . . ,  m the following system has solutions z11,. . . ,  z~,,~ in the 

residue ring of n~ max{nit}: Pr , where n r  = 

(2.5.2) aij~r~ z~ - =  --ajTr nj"+m~ modulo P~"I J = 1, . . , k  
i=1 

Indeed, suppose (2.5.1) has solutions in M. Then for each j and each r, 

ordp~ ([~-~i~1 aijxi] - el) > - m~, and consequently 

ordp~ nj~ mr  a i j  7r r 7r r x i  

\ ki----1 

ordpr ~ aij rr~ j~ zi~ 
k i = l  

+ ayzr~" +mr) _> ny~, 

q- affr n~+m~) ~ njr, 

where z~ = 7r~xi  is integral at p~ and hence a representative of a residue class 

modulo p~ .  

Conversely, suppose for every r, (2.5.2) has solutions (Z l~ , . . . , z~) .  By the 

Strong Approximation Theorem for each i, there exists an element x~ such that 
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7c~x~ ~- zir modulo p~+l ,  r = 1, . . . ,  m, and all the other poles of xi are among 

valuations of S. Then for all i, xl E M, and 

~176  ) 

1 ) n j r  m r  -~ --  m r  --  ~ljr ~- ordp~ aijTr r 7r r x i  + ajTrTr b ' + m ~  

ki=l  .l 

,1 - mr - njr + ordp~ aijzr~ j~ (7r~'xi = Zir 
ki= l  

E ftjr -'k aijTr r Zir -~ ajTr n j~+m~ 

i=1 

>_ - mr - n j r  q- min(n~ + 1, n j r )  = - - m r  -- n j r  -t- f t j r  = - - m r .  

On the other hand, if q r {Pl , - . . ,  P~} is any other non-archimedean prime of 

K not in S, then ordq(~iU__l aijxi + aj) >_ 0 by assumption on the coefficients 

and by construction of xi. Thus, y j  E M. 

Finally, since the residue ring of p~  is finite, we can decide effectively whether 

(2.5.2) has solutions in this residue ring. 

In the next section we will construct a Diophantine definition of S-integers 

over some modules of pseudo-S-integers with infinite sets of denominator primes. 

3. A Diophant ine  defintion of S-integers over some modules  of pseudo-  

S- integers  

LEMMA 3.1: Let K be an algebraic number field or an algebraic function field 

over a finite field of constants. Let p be a non-archimedean prime of K,  let p 

be a rational prime relatively prime to p and not divisible by the characteristic 

of K,  and let L be a cyclic extension of K of degree p such that p remains 

prime in the extension. (That is the ideal pRr,p, where Rr,p is the ring of  

elements of L integral at p, is a prime ideal.) Let z E K be an element such that 

ordpz ~ 0 rnodp. Then the equation NL/K(x )  = z has no solutions in L. 

Proof: Let P be the prime above p in L. Since NL/K(x )  = z, we must conclude 

that ordpNr/K(X) r O, ordpx ~ 0 and for any a E Gal (L /K) ,  ordpa(x)  = 

ordpx. Thus, ordpNr/K(X) ~ 0 modp and we have a contradiction. 
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LEMMA 3.2 (Hensel's Lemma): Let Kp be a local field with a prime p and a 

finite residue field and let f ( X )  be a polynomial over the ring of  integers of  K .  

Let ~o be an integer of Kp such that ordpf(a0) > 2ordpf '(ao).  Then f ( X )  has 

a root a in Kp. (See, for example, [L], Proposition 2, page 42.) 

LEMMA 3.3: Let Kp be a local field with a finite residue field and the prime p, 

let p be a positive rational integer relatively prime to the characteristic o f  the 

residue field of  Kp, let a Kp unit a be a pth power in the residue field of  p. Then 

a is a pth  power in Kp. 

Proof: Consider the polynomial X P - a  which is separable and has a root modulo 

p. Thus by Hensel's lemma, this polynomial has a root in Kp. 

LEMMA 3.4: Let Kp be a local field of  characteristic 0 with a prime p and the 

residue field of  characteristic p > O, such that p is a factor of  p, let a be a unit of  

Kp such that a TM e p modulo p2r for some e E Kp. Then a is a pth  power 

in Kp. 

Proof: Consider the polynomial f ( X )  = X p - a. Then ordpf(e) = 2e(p/p) + 1. 

On the other hand, f ' (e)  = pe p-I ,  and ordp(f '(e)) 2 = 2ordpp = 2e(p/p) < 

ordpf(e). Thus, f ( X )  has a root in Kp. 

LEMMA 3.5: Let Kp be a local field with a prime p and a finite residue field. 

Let p be a rational prime different from the characteristic o f  the residue field, let 

x C Kp and let E v  = Kp(x  -1 - 1) lip. Then i fordp(x -1 - 1) > 0 or ifordpx > 0, 

x is a pth power in E3v. 

Proo~ First suppose ordp(x -1 - 1) > 0 and let w = (x -1 - 1). Then 

1 
x =  - ( 1 -  w + w 2  + . - . )  -- l m o d p ,  

l + w  

and consequently, by a previous lemma, x is a pth power in Kp. 

Suppose next ordpx > 0. Then 1-~ _ z -p  for some integer z E Ep .  Therefore, 

xz  -p = (1 - x) ~ x z  -p --- 1 modulo P,  where P is the prime above p in E.  

Again, by Lemma 3.3, xz  -p is a pth power in Ep,  and therefore x is a pth power 

in Ep.  

LEMMA 3.6: Let L be a field and let E be a cyclic extension of  L of  prime degree 

p > 2. Let x E L be such that it is a pth power in E.  Then x is a norm of  an 

element in E.  
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Proof'. If x is a pth power in L, then it is clearly a norm. Suppose x is not a 

pth  power in L. Let y c E be such that  yP = x. Then all the conjugates of 

y over L are of the form ~py, where ~p is a primitive pth root of unity. Thus, 

I~E/L (y ) = ~(pP(p-1) ) /2X = X,  since p is odd. 

LEMMA 3.7: Let Kp, Ep  be as in Lemma 3.5, and assume that the extension 

E p / K p  is unramified. Let x be such that ordpx ~ 0modp .  Then x is a norm of 

an element from Ep.  

Proof  Let zr be a local uniformizing parameter  of Kp. Then for some r, x = 7l'rPe 

where e is a p-unit. Since the extension is not ramified, e is a norm of some ~ E Ep  

(see, for example, Proposition 3.11, page 153 of [J]). Thus x is the norm of 7r~(~. 

LEMMA 3.8: Let K be a number field or an algebraic function field over a finite 

field of constants. Let a E K .  Let p be a rational prime distinct from the 

characteristic of the field. Then a prime p of K relatively prime to p ramifies in 

the extension K ( a l / P ) / K  if  and only i f  ordpa ~ 0 modp.  (Here and below "a 1/p'' 

will denote a p-th root of a.) 

Proof" If ordpa ~ 0 then p will clearly ramify in the extension. Suppose now 

the residue field of p is not of characteristic p and ordpa ---- 0 modp.  Since we 

can multiply or divide a by a pth power of some local uniformizing parameter  

without changing the extension, without loss of generality we can assume that  

ordpa -- 0. But in this case the discriminant of the power basis of a 1/p will be a 

unit at p, and thus p will be unramified. 

LEMMA 3.9: Let K be an algebraic function field of positive characteristic. Let p 

be a rational prime distinct from the characteristic of the field. Let {q, Pl , .  �9 Pm} 

be a set of primes of K,  where q is of  degree 1, let {a, b l , . . . , b m }  be a set of 

elements of K such that a is integral at q and for each i = 1 , . . . ,  m, bi is integral 

at Pi. Let  {n, n l , . . .  ,nm} be a set of natural numbers and let 7r be of order I at 

q. Then there exists y E K satisfying the following requirements: 

1. ordqy = - n  - kp, for some k E N\{0}; 

2. y is integral at all the other primes of K;  

3. ordp,(y - bi) > hi; 

4. ordq (yrr n+kp - a) > O. 

Proof  By the Strong Approximation Theorem, there exists c E K such that  

o rdp , (C-  b/) > ni, c has a pole at q and is integral at all the other primes. Next 
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using the Strong Approximation Theorem twice, one can establish that there 

exists an element w E K whose divisor is of the form q-,~-kp 1-IP~T, where "T 

is an integral divisor, and for all i, ti > ordp~(c - bi), and n + kp > Iordqcl. 

Furthermore, by multiplying w by an appropriate constant if necessary, we can 

assume that  7r'~+kPw --- a modulo q. (Since we have assumed q to be of degree 1, 

every residue class modulo q contains a constant.) Next consider z = w + c. z 

is integral at all the primes except for q at which it has a pole of the prescribed 

order. Furthermore, zTr n+kp ~ ~rn+kPw TM a modulo q, z ~- c TM bi modulo p~n', 

and hence we are done. 

LEMMA 3.10: Let F be a field, let p be a rational prime distinct from the char- 

acteristic of  the field. Assume F has all the p-th roots of  unity and let a C F. 

Then either a is a pth power in F or a I/p is of degree p over F and the extension 

F ( a l / p ) / F  is cyclic. 

Proof: Suppose a is not a pth power and F contains pth roots of unity. Let a 

be a root of the polynomial G ( X )  = X p - a in the algebraic closure of F.  F ( a )  

also contains ~ a ,  where (p is a pth primitive root of unity and i = 1 , . . .  , p -  1. 

Therefore, F(cQ contains all the roots of G(X)  and the extension is Galois. 

Finally consider an element cr E Ga l (F (a ) /F )  sending a to ~pa. It is clear that 

the order of ~r is p, and thus the extension is of degree p and is cyclic. 

LEMMA 3.11: Let K be a number field or an algebraic function field over a finite 

field of  constants. Let p > 2 be a rational prime different from the characteristic 

of  the field. Assume I f  contains all the pth roots of unity. Let S be a finite 

collection of primes of K which in the case of a number field should contain all 

the archimedean primes and all the factors of  p, and in the case of  an algebraic 

function field should contain at least one valuation of degree 1. Let S f  C S be 

a subset of  S which in the number field case contains all the non-archimedean 

primes in S and in the function field case contains all but one element o r S  which 

will be assumed to be of degree 1. Let m be the following integral divisor of  K:  

111.~- 

(v~s~,v~p) pl p 

Let {ci } be a collection of  elements of  K satisfying the following requirements: 

1. I f  K is a number field, all ci's are algebraic integers. 
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2. f f  K is a function field and {q} = S \ S / ,  then ci's have a pole at valuation 

q only. 

3. Let ~ E K be a representative of an equivalence class modulo m. Let r be 

an integer between 0 and p. Let 3 be a representative of an equivalence 

class modulo q. Let 7r be a local uniformizing parameter with respect to q 

(in case K is a function field). Then for some i, 

ci = a modulo m, 

ordqci ~ r modulo p, 

CiTr -~ ~- j~ modulo q, 

where the last two equivalencies apply in the function field case only. Let 

W = S u {a11 the primes dividing ci 's}. Next, for some x E K ,  let ai = 

((cix) -1 - 1) l/p, let a E OK,S be an S-unit (i.e. all non-archimedean primes 

at which a has a pole or a zero are elements of S) such that it is not a pth 

power of  K,  and assume x does not have a pole at any prime t ~ S such 

that a is a pth power modulo t, and at any prime t E W \ S .  

Consider the following equations: 

(3.11.1.i) 

(3.11.2.i) 

NK(a )/K(Yl) = CiX, i = 0 , . . . ,  [{Ci}[, 

) = (CiX), i = O, 1 , . . . ,  [{Ci}[. 

Then for some i both (3.11.1.i) and (3.11.2.i) have solutions yq E K(ai )  and 

y2 E K(a i ,  a 1/;) i f  and only if  for every non-archimedean prime t of K such that 

ordtx < 0, either ordtx --- 0modp  or t E S. 

Proof'. First of all, we note that the collection {ci} as described above exists in 

the function field case by Lemma 3.9, and by the Strong Approximation Theorem 

in the case of number fields. Next assume there exists a non-archimedean prime 

t of K such that  ordtx < 0, ordtx ~ 0 modp, and a is not a pth power in the 

residue field of t, t r S. First of all, consider NK(~) /K(Yl )  = CiX for some i. 

Since ordtx < 0, t r W, ordt(c~x) -1 > 0 and ord~((c~x) -1 - 1) = 0. Since t 

is not a factor of p, t is not ramified in the extension K ( ~ ) / K .  On the other 

hand, ordtcix ~ 0 modp, and thus unless t splits into distinct factors in K ( a i ) / K ,  

(3.11.1.i) will have no solutions by Lemma 3.1. So suppose t splits completely 

in K(a i ) ,  and let h , . - . ,  iv be factors of t in the extension. Then a is not a pth 

power modulo any of tj, since their residue fields are the same as the residue field 



Vol. 101, 1997 THE LOGIC OF PSEUDO-S-INTEGERS 241 

of t. By the same argument as above, in the extension K(ai, aWP)/K((~i) no tj 

will be ramified, and since a is not a pth power in the residue field, no tj will split 

either. Thus, either the first or the second norm equation will have no solutions. 

To prove the converse, we will show that if x does not have the prohibited 

poles, for some i both equations will have solutions locally at all primes of K and 

their factors in K(a l ) .  Then we will use the Hasse Norm Principal to assert the 

existence of a global solution. The proof will proceed by considering 5 different 

cases: t ~ S, ordt(c~x) = 0 (under our assumptions this is equivalent to ordtc~ -- 

ordtx = 0) and ord~((cix) - 1 - 1 )  > 0; t ~ S, ordt(c~x) -- 0 and o r d d ( c i x ) - l - 1 )  = 

0; t ~ S, ordtx < 0 (under our assumptions this is equivalent to ordt(cix) < 0) 

and plordtx; t g S, ord~x > 0 (under our assumptions this is equivalent to 

ordt(cix) > 0); t E S. 

We will first fix i and show that assuming x has no forbidden poles, both 

equations (3,11.1.i) and (3.11.2.i) will have solutions locally at all the primes 

outside S. Then we will show that  for some i for all t E S both equations will 

have local solutions. 

CASE 1: t ~ S, ordtx = 0 = ordtci = 0 and ordt((c~x) -1 - 1) > 0. Since 

ordt((cix) -1 - 1) > 0, by Lemma 3.5, cix is a pth power in Kt and thus in 

Kt(ai), and hence, by Lemma 3.6, (cix) is a norm in the extensions Kt(ai)/Kt 
and Kt(a 1/p, ai)/Kt(al). 

CASE 2: t ~  S, o r d t x = 0 = o r d t c i  andord~((cix) - 1 - 1 )  = 0 .  In this c a s e t  

and its factors in K(ai) are unramified in both extensions, and thus, since cix is 

a unit at t, it is a local norm with respect to t and its factors in both extensions, 

by Lemma 3.7. 

CASE 3: t ~ S, ordt(cix) < 0 and p[ ordtx (under our assumption this is 

equivalent to the condition p[ ord~(cix)). In this case, t is again not ramified in 

either extension, and we can apply Lemma 3.7. 

CASE 4: t ~ S, ordtcix > 0. By Lemma 3.5, cix is a pth power in Kt(a~). The 

rest of the argument proceeds as in case 1. 

CASE 5: t E S, t is non-archimedean. By assumption on {ci}, for any x there 

exists i such that  for all t in S, cix is a pth power in Kt. Therefore, for this i, 

both equations will have solutions locally at all the primes of S and their factors 

in K(ai). 
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Thus, we have shown that for t r S, both equations (3.11.1.i) and (3.11.2.i) 

have solutions locally at t (and its factors) for any i, and we have shown that 

there exists i such that (3.11.1.i) and (3.11.2.i) have solutions locally for all 

non-archimedean t E S. In case K is a number field we still have to consider 

archimedean valuations. Clearly, if the archimedean valuation is a complex one, 

both equations will have solutions. If the archimedean valuation is a real one, 

then since p > 2, cix is a pth power in ~ and both equations have solutions. 

Thus, for some i, both (3.11.1.i) and (3.11.2.i) will have solutions at all the 

primes and therefore, by the Hasse Norm Theorem, will have global solutions. 

LEMMA 3.12: Let K be as above and let S be any finite set of non-archimedean 

primes of  I( .  Let M be any module of  pseudo-S-integers. Then the set of  non- 

zero elements of  K has a Diophantine definition over M.  

Proof" The proof can proceed essentially along the same lines as the proof of 

Theorem 4.2 of [$5], the only difference being that after we select two primes p and 

q not in S we should let a(p) be such that ordpa(p) is greater than the allowable 

exponent of p in the denominator of elements of M, so that (a(p)) -1 ~ M. A 

similar requirement will apply to a(q). 

LEMMA 3.13: Let E be a global field and let p be a non-archimedean prime. 

Then the set of  elements of  E integral at p is Diophantine over E.  

Proof'. If the field characteristic is different from 2 see [$5], w In the case the 

characteristic is 2, we cannot use norm forms from extensions of degree 2 as is 

done in the above reference. Let q -~ p be another prime of E of prime degree 

q > 2. (Existence of such a prime can be derived from the proof of the Chebotarev 

density theorem.) Pick a rational prime p > max(3, hEdegree(p) degree(q)), 

where h -- h~ is the class number of E,  and let x be an element whose divisor is 

of the form (pdegree(q)/qdegree(p))h. Let w = (xt p + t-P). Then 

ordpw - 0 modulo p ~ ordpt _> 0. 

Let {di} C K = E(~v), where (p is a primitive pth root of unity, and assume 

{di} satisfy the following conditions: 

1. There exists a valuation t of K such that every di is integral at all the 

primes except for ~ and ordtdi = 0 modp. 

2. For all i, ordpdi = 0. 
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3. {ordqd~} runs through all the residue classes modulo p. 

A finite set of such elements exists by Lemma 3.9. Let a~ = ((diw) -1 - 1) WB, 

and let c be a constant such that c E K is not a pth power modulo p in K.  

(Note that p and q might split in K. On the other hand, they do not ramify 

in this constant extension. So if Pl (ql) is a factor of p (q) in K and w E E,  

then ordp~w = ordpw (ordq~w = ord~w). Thus, we will continue to treat  p and 

q as if they remained prime in K with the understanding that  a factor of p or q 

should be substituted for them, if p or q do not remain prime.) Next consider 

the following equations: 

(3.13.1.i) 

(3.13.2.i) 

[~K(a~)/K(Yl) : diw; 

N/<(~ ,cl/P)lK~ (~) (Y2) = d~w. 

First of all, we observe the following. If ordpt < 0 and consequently 

ordpdiw ~ 0 modulo p, 

as in the proof of Lemma 3.11, for all i, either (3.13.1.i) or (3.13.2.i) will have no 

solutions. So assume ordpt _> 0 and thus ordpw ~ 0modulop.  Then, ordpdiw - 

0 modulop, and as in the proof of Lemma 3.10, for all i, both norm equations 

will have solutions locally with respect to p and its factors in K(c~). 

Next let t be a prime different from p and q. Fix any i. Then if ~ = t is a pole 

of dlw, then in the extensions K(o~i) /K and K(a i ,  c l /p) /K(ol i) ,  t and its factors 

are not ramified since diw has a pole of degree equivalent to 0 modulo p at 

and any of its factors in K(c~i). Thus, both norm equations will have solutions 

locally at such a prime ~ and its factors in K(a i ) .  If ~ is a zero of d~w or a zero 

of (d~w) -1 - 1, then as in the argument in the proof of Lemma 3.11, d~w is a pth 

power locally at all the factors of ~ in K(a~) and K(o~i, c 1/p) and therefore both 

norm equations will have solutions. Finally, if v is not a zero or a pole of diw or 

(diw) -1 - 1, then it is not ramified in either extension, and diw, as a unit at ~, 

is a local norm again. 

Thus, if ordpt _ 0, for all i, both equations will have local solutions at all 

primes different from q. Furthermore, for some i, ordqd~w ~- 0 modulo p, and 

thus for this i, both norm equations will have local solutions at q and its factors 

in K(c~i). Therefore, again by the strong Hasse norm principal, for this i, we will 

have global solutions to both norm equations. 
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Since we can rewrite equation (3.13.1.i) and (3.13.2.i) as equivalent polynomial 

equations over E,  we are done. 

LEMMA 3.14: Let E be a global field, let p be a rational prime different from the 

characteristic of the field, let a E E, let T be a set of all primes q o r E  such that 

x p - a is irreducible modulo q, let S be a finite set ofnon-archimedean primes of 

E,  let n E N. Then Mn,T,S is recursive. 

(Follows from the discussion in w 

LEMMA 3.15: Let F be a finite field. Let a E F and let p be a rational prime 

distinct from the characteristic of the field. Then G(X)  = X p - a E F[X] is 

irreducible if  and only i f  a is not a pth power in F and F contains pth roots of  

unity. 

Proo~ Suppose a is not a pth power and F contains pth roots of unity. Then 

by Lemma 3.10, any pth root of a is of degree p over F and G(X)  is irreducible. 

Conversely, suppose the polynomial is irreducible and let a be a root of G(X) .  

Then [F(a):  F] = p. On the other hand, all extensions of finite fields are normal 

and consequently F ( a )  will contain roots of unity. But if pth roots of unity are 

not in F,  the extension F ( a ) / F  contains a non-trivial subextension of degree 

equal to or less than p - 1. Thus, we have a contradiction. 

COROLLARY 3.16: Let K be a global fieM, let p be a rational prime distinct 

from the characteristic of the field, let p be a K-prime such that p is not a factor 

of p, let a E K be a unit at p, let ~p be a primitive pth root of  unity. Then a 

polynomial G(X)  = X p - a is irreducible modulo p / f  and only i f  the extension 

K(~p, al /P ) / K ( ~p ) is of  degree p, and a factor of p in K ( ~p ) remains prime in this 

extension. 

Proo~ Suppose G(X)  is irreducible modulo p. Then G(X)  is irreducible over 

K,  and [K(al/P): Ix'] = p. Since [g(~p): K] < p - 1, a 1/p (~ g(~p) and thus by 

an argument similar to the one used in Lemma 3.10, [K((p, al/p): K(~p)] = p. 

Furthermore, by Lemma 3.15, a is not a pth power modulo p and the residue field 

modulo p contains pth roots of unity. Therefore, either K contains pth roots of 

unity or p splits completely in the extension K(~p) /K.  On the other hand, in 

either case, the residue field of any factor of p in K((p) is the same as the residue 

field of p. Thus, G(X)  is irreducible over the residue field of any factor of p in 

K(~p), and hence these factors will not split in the extension K(~p, al/p)/K(~p).  
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Conversely, if one of the factors of p in K (~p) did not split in the above extension 

which is of degree p, then a 1/p must be of degree p over the residue field of this 

factor, but then a 1/p must be of degree p over the residue field of p, and thus the 

polynomial G ( X )  must be irreducible modulo p. 

THEOREM 3.17: Let E be an algebraic number field or an algebraic function 

field over a finite field of  constants. Let p > 2 be distinct from the characteristic 

of  the field, and let T be a collection of non-archimedean primes of  E such that 

for some a E E,  for all p E T,  the polynomial x p - a is irreducible modulo p . .Let  

be a finite collection of  non-archimedean primes of  E and let n < p. 

Then O E, ~ has a Diophantine definition over M~,T, ~. 

Proo~ If E is a number field then let K = E(~p), where ~p is a primitive pth 

root of unity. If E is an algebraic function field, then let K be a field which is 

obtained from E by adjoining primitive pth root of unity and, if E does not have 

a prime of relative degree 1, by adjoining a constant of degree prime to p over 

E,  so that  the resulting field has a degree 1 prime. If such a prime of degree 1 

is not in S, then add this prime together with all the zeros and poles of a, and 

in the case of a number fields, together with all the factors of p, to S, and call 

the resulting set S. The only primes which will ramify in the above described 

extension are factors of p (in the case of a number field). Therefore, if t lies above 

some prime of E which is not a factor of p, and x E E, then x will have the same 

order at t as at a prime above it in K.  Furthermore, by Lemma 3.16, a will be 

of degree p over the residue fields of all the primes above primes in T. 

Next consider equations (3.11.1.i), (3.11.2.i) with the above described K and 

S. These equations can be rewritten as equivalent polynomial equations over K 

and K(a i )  respectively, which can then be rewritten as equivalent polynomial 

equations over E.  Furthermore, since, as we have noted above, the set of non- 

zero elements of Mn,T,- $ has a Diophantine definition over M ,T,~, we can then 

rewrite all the polynomial equations over K as equivalent polynomial equations 

over M , T ,  ~. 

Given x E Mn,T,- $, using Lemma 3.13, we can write down a system of Diophan- 

tine equation~ assuring that  x does not have poles at valuations of W \ S  U S \S ,  

where W is as in the proof of Lemma 3.11. Finally, if x E M~,T, ~ and x does not 

have poles at W \ S U  S \ S  then for some i, (3.11.1.i) and (3.11.2.i) have solutions 

in the corresponding fields if and only if x E OE," $. | 
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For future reference denote the set of equations used to form the above 

described Diophantine definition by DD(n, T, S, p, a). 

C O R O L L A R Y  3.18: Let E be any number field where the Diophantine prob- 

lem is undecidable over the ring of integers, let Mn,T,~ be as above and let 

P(x l  . . . . .  x~) -- 0 be any polynomial equation over E. Then there is no 

algorithm to decide whether this equation has solutions in Mn,T,g. (Note that 

the corresponding result concerning algebraic function fields over finite fields 

of constants has been known before, since it is implied by the Diophantine 

undecidability of the field.) 

We will next show that by combining several systems of the form 

DD(n, T, S, p, a) for different p's and a's we can make the density of T arbitrarily 

large. 

LEMMA 3.19: Let K be a global field. Let R1 /K  and R2/K  be two Galois 

extensions of K such that [R1R2: R1] = [R2: K] and [R1R2: R2] = [RI: K]. 

Then the following statements are true: 

1. R1R2/K is Galois, Gal(RIR2/K) ~- Gal(R1/K) �9 Gal(R2/K), and for 

i = 1, 2, i # j,  Gal(R1R~/Ri) ~ Gal(Rj/K).  

2. Let/~ be a prime of RIR2 and let p be the prime below fl in K. Then p 

splits completely in R2 if and only if the Frobenius automorphism of fl is 

of the form (a, identity), where a E Gal(R1/K), and the second element 

of the pair is the identity element of the Gal(R2/K). 

Proof: 1. Let ai be the generator of Ri over K. Then ai will retain the 

same conjugates over Rj, for i ~ j,  i , j  = 1,2. Furthermore, each element of 

Gal(R1R2/K) will be determined by the images of a l  and a2, while each element 

of Gal(R~/K) is determined by the image of ai. Thus we have a one-to-one onto 

map between Gal(R1R2/K) and Gal(R1/K) | Gal(R2/K) as sets and it is easy 

to verify that  it is an isomorphism. Finally, given the above argument it is clear 

that  for i, j -- 1, 2, i r j ,  

Gal(R1R2/Ri) = {(a, identity)[ (7 e Gal(Rj/K)}.  
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2. Consider the following diagram: 

~ R~R2 

(3.19.1) R1 R2 ~ ~ ~ R2 

p ~ K  

and let ~ and p be as described in the statement of the lemma. Let ~- be the 

Frobenius automorphism of ~ over K. Then (T / is the decomposition group 

of/~ over K and (v) n Gal(R1R2/R2) is the decomposition group of /3 over 

R2. Furthermore, the decomposition group of ~ N R2 over K is isomorphic 

the quotient (T)/(v) A Gal(R1R2/R2). But since p splits completely in R~, 

this quotient is trivial, and thus (~'/ C_ Gal(R1R2/R2). Hence, ~- must be of 

the desired form. Conversely, suppose a e Gal(R1/K) ,  and consider 7- = (a, 

identity)C GaI(R1R2/K).  Let/3 be a prime whose Frobenius automorphism is 

T. Then since T e Gal(R1R2/R2), (~') is the decomposition group of/3 over R2, 

and thus the decomposition group of ~ n R2 over K is trivial. Thus p will split 

completely in R2. 

COROLLARY 3.20: Let K be a global !ield; let {Li} be a sequence of Galois 

extensions of K satisfying the following requirements: 

1. Let Til...i~ =- Lil . ' .  Li~. Then [or any ik+l E N \ { i l , . . . ,  ik}, 

[Ti~...ik+l: Ti~...ik] = [L~k+,: K] and [T~l...~k+,: Lk+l] -~- [Ti,...ik: It']. 

2. For any {il . . . .  , ik} C N, Til...it is Galois over K. 

L e t  Ek+l = LI" " Lk+l = T1...(k+l), let rk+l C Gal(Ek+l/K) .  

Then either all K-primes p with an Ek+ l-factor whose Frobenius automorphism 

is rk+l split completely in some Li, i = 1 , . . . ,  k + 1, or none of them do. 

Proof'. Assume there exists a prime p in K,  such that p splits completely in some 

Li, 1 < i < k + 1 and p has a factor ~ in Ek+l whose Frobenius automorphism 

is ~-k+l. We will prove that all the other primes q of K with factors ~/in Ek+l 

whose Frobenius automorphism is Tk+l will split completely in this Li. 

First, we write Ek+l = TI...(~-I)(~-I)...kL~, and note that  we can apply Lemma 

3,19 with R1 -- T1...(i-1)(i+l)...k and R2 = L~. Thus, we conclude p splits com- 

pletely in L~ if and only if Va+~ ---- (a~+~, identity), where a~+l 
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Gal(T1...(i_l)(i+l)...k/K) and the second element is the identity of Gal(Li /K) .  

The last assertion, however, is true if and only if all q's as described above will 

split completely in Li. 

LEMMA 3.21: Let K be a global field; let { Li } be a sequence of Galois extensions 

of t (  satisfying the requirements 1 and 2 from Corollary 3.20 as well as the 

following requirements: 
oo 1 

3. E i = I  [L,: K] --  (X~. 

4. For all i E N, the extension L i / K  is abelian. 

Let Sk be the density of the set of all the primes of K splitting completely in 

some Li for 1 < i < k. Then limk--.oo Sk = 1. 

Proos We will prove by induction that 

1 
Sk+, = Sk + [vr'~k+l: r,j--1 (1 - Sk). 

Consider the primes in Sk+l\Sk. Let p be a prime in the above described set and 

apply Lemma 3.19 with R1 -- Ek and R2 -- Lk+l using the diagram below: 

(3.21.1) 

E Ek+l 

/ 
"~ @ E k  L k + l  

/ 
p p c K  

Then in Ek+l, p has a factor 13 whose Frobenius automorphism is T = 

(a, identity), where a r G a l ( E j K )  and the second element is the identity of 

Gal(Lk+I/K).  Thus, TIE k = (T. Conversely, for each a E Gal(Ek/K) ,  v is a 

Frobenius automorphism of some Ek+l-prime 3, such that p, the prime below 

it in K,  splits completely in Lk+l. Let 7 be the Ek-prime above p. Then 7 

splits completely in Ek+l. Therefore, the decomposition group of 7 over p is 

isomorphic to the decomposition group of/~ over p, and hence, a is the Frobenius 

automorphism of 7 over p. 

By assumption, p does not split completely in any Li, i = 1 , . . . , k .  Thus 

p belongs to the set whose density is 1 - Sk. Furthermore, from the previous 

corollary, all the primes in this set can be divided into non-intersecting classes 
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corresponding to the Frobenius automorphisms of their factors in Ek. Using 

the Chebotarev density theorem and the fact that  all extensions are abelian, 

we can conclude the number of elements of Gal(Ek/K) which are Frobenius 

automorphisms of Ek-primes lying above primes of K which do not split in any 

Li for i = 1 . . . .  , k is (1 - Sk)" [EK: K]. Therefore, we have (1 - Sk)" leg: K] 

elements of Gal(Ek+l/K) which are Frobenius automorphisms of the primes lying 

above the primes in Sk+l\Sk. Therefore, the density of this prime set is 

(1 - Sk).  [EK: K]/[Ek+I: K] = (1 - Sic). ILk+l: / ( ] -1 .  

Suppose now limk__.~ Sk ~ 1. Since {Sk} is a non-decreasing bounded 

sequence, it must have a limit. Suppose this limit A < 1. Then 1 -- Sk _> 1 - A 

for all k. But then 

Sk+l > Sk + (1 - A).  [Lk+l: K] -1, 

k+~ 1 
Sk+ 1 > (1 -- A) E [Li: K] ,co. 

COROLLARY 3.22: Let K be a number field, and let {Pi}i~ be the sequence of 

all rational primes which do not have ramified factors in K. For each i E N, let 

~i be a pith primitive root of unity and let Sk be the density of the set of primes 

of K splitting completely in K(~i) for some 1 < i < k. Then limk__.~ Sk = 1. 

Proof." We have to show that all the conditions of Lemma 3.21 are satisfied. 

First of all, we will show that [K(~il "" "~ik+l): K(~i~ ." "~ik)] = [K(~k+l): K]. 

In the extension, K(( i l  " "  ~i~+~)/Q, the ramification degree of a factor of Pie+l, 

is at least pi~+l - 1. On the other hand, by assumption Pik+l does not have any 

ramified factors in the extension K / Q  and no ramified factors in the extension 

K(~i , . . .  ~ik)/K. Thus, 

[K(~i~" "~i~+~): K(~i~ ...~i~)] = [K(~k+l): K]--Pik+~ - 1. 

All the extensions are clearly Gatois and abelian by Lemma 3.19 and induction. 

Finally, ~-~-~1 1 diverges since we removed only finitely many primes. pi--1 

COROLLARY 3.23: Let K be an algebraic function fidd over a finite field of 

constants C of size q. Let {Pi}ic• be a sequence of all rational primes which 

does not include factors of q. For each i E N, let ~i be a primitive qi th root of 
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qPi --1 
unity, where qi is a rational prime, qi ~ -1  and qi ]( (q - 1). Then the following 

statements are true: 

1. For each i the above described qi exists. 

2. [K(~i): t(] = Pi. 

3. qi r qj, for j # i. 

4. Let Sk be the density of the set of primes of K splitting completely in K (~i) 

for some 1 < i < k. Then limk--.~ Sk = 1. 

Proof." 1. Let t be a common divisor of q - 1 and @ = qP~- 1 + . . .  + 1. Then 

t I pi, i.e. t = Pi. 

2. Since qi /~ q - 1, qith primitive roots of unity are not elements of C. On 

the other hand, if Ci is the extension of degree pi of C, then (i E Ci. Thus, 

C((i) -- Ci since the extension Ci/C is of prime degree and therefore has no 

subextensions. Thus, [K(~i): K] = Pi. 

3. (i f[ Cj, where Cj is the extension of degree pj # pi of C, since the extension 

C j / C  does not have subextensions of degree pi. Thus qi # qj for i # j .  

4. First of all, the equality [I((~il ""~ik+l): K(~il ""~i~)] = [K((k+t): K] 

follows from the fact that  for each pair i 5s j ,  ([K((i): K], [K(.~j): K]) = 1. Since 

we are talking about extensions of finite fields, all the extensions are Galois and 

abelian. Finally, as in the preceding corollary y~4~=a 1/pi diverges. 

LEMMA 3.24: Let K be a global field, let p be a rational prime distinct from the 

characteristic of the field. Let ~ be a primitive pth root of unity. Let a l , . .  ., ak E 

K be such that there exists a set of distinct K-primes { q l , . . . ,  qk} satisfying the 

following conditions: 

1. ordq~ai = 1. 

2. ordq,aj = 0 for i 5s j .  

3. I l K  is a number field then, for aH i = 1 , . . . ,  k, qi is not a factor of p. 

Then the density of the set of K-primes which split completely in K( ( )  but whose 

factors do not remain prime in any of the extensions K(a~/p, ( ) /K(~ )  is 

1 1 

[K(~,al/p, 1/p, K] - [K((): Kip k" 
�9 . . , a  k J: 

Proof'. First of all, we note that  a l , . . . , a k  E K exist by the Weak Approx- 

imation Theorem. Secondly, we note that for each i = 1 , . . . ,  k, by construc- 

tion, qi does not ramify in the extension K(~, al/P,. 1 / p  1 / p  alk/V)/K but �9 " ,  t ~ i -  1 '  ~ i + 1 '  " " " 

1/p 
does have ramification degree p in the extension K(~, a I , . . . ,  a~/P)/K, so that  
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indeed [K(~, all/p . . . . .  a~/P): K] = [K(~): K]p k. Furthermore, suppose p splits 

completely in K(~), but a factor 13 of p does not remain prime in any of the 

extensions K({, a~/P)/K(~). Since all of these extensions are cyclic of degree p, 

this means t3 splits completely in all these extensions. On the other hand, let 

M be any finite extension of K(~) and assume 13 splits completely in the ex- 

tension K(~,a~/P)/K((). Then, assuming M(~) does not contain u~ , all the 

factors of 13 will split completely in the extension M(~, 1/p a i )/M(~). Thus, 13 will 

split completely in K(~, all/p . . . .  , a~/P)/K({). Therefore p will split completely 

in K(~, all~P,..., a~/P)/K. Consequently, the desired conclusion follows from the 

Chebotarev density theorem. 

THEOREM 3.25: Let T be an arbitrary set of non-archimedean primes of a global 
field K. Let n be any positive integer. Then for any 6 > 0 there exists a module 

of pseudo-integers Mn,T~,S such that T8 C T, the Dirichlet density of some set 

containing T - T~ is less than 6, and S-integers are polynomially definable over 

Mn,T~ ,S. 

Proof." Assume 5 > 0 is given. Let {Pi} be a sequence of rational primes such 

that  in the case of a number field, the primes in the sequence are greater than n 

and satisfy the requirement of Corollary 3.22. In the case of a function field, the 

sequence {p~} should be such that the corresponding sequence {q~}, as defined in 

Corollary 3.23, contains only the primes which are greater than n. 

Let k be large enough so that [1 - Ski < 5/2, where Sk is defined in Corollary 

3.22 or 3.23, depending on the nature of the field. Next, for each i = 1 . . . .  , k, se- 

lect nil . . . .  , ai,~ satisfying the requirements of Corollary 3.23 and assume that  m 

is large enough so that  in the case of a number field for all i, 1/(pi - 1)p~ < 5/2k, 
and in the case of a function field 1/(pi �9 q~) < 5/2k, where qi is defined as in 

k,rn 
Corollary 3.23. Next consider equations [.Jl,j=l D D ( n, T~j, S, pi, aij ) for number 

k m  fields, Ui,~=l DD(n, Tij, S, q~, aij) for function fields, where Tij is the set of K 

primes whose factors in K(~i) remain prime in the extension K(~i, i/p~ aij )/K(~i) 
k m  

or K ( ~ ,  a~fq')/K(~i) depending on the nature of the field. Let T = (-Ji,~=l Tij. 
By Theorem 3.17 and Corollary 3.16, these equations will be a Diophantine def- 

inition of OK,S over M,,T,S. Suppose a K-prime p ~ T. Then either O does 

not split completely in any extension K(~i)/K, or for some i, p splits completely 

in some extension K(~i)/K, but no factor of O in K(~i) remains prime in any 

extension K(~i,a~fP~)/K(~i) or K(~i, 1/q, aij )/K(~i) depending on the nature of 
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the field. Thus, p will belong to a set whose density is less than 5/2 + k~/2k -- ~. 
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